Header Parameter Models¶
If you have a group of related header parameters, you can create a Pydantic model to declare them.
This would allow you to re-use the model in multiple places and also to declare validations and metadata for all the parameters at once. 😎
Note
This is supported since FastAPI version 0.115.0
. 🤓
Header Parameters with a Pydantic Model¶
Declare the header parameters that you need in a Pydantic model, and then declare the parameter as Header
:
from typing import Annotated
from fastapi import FastAPI, Header
from pydantic import BaseModel
app = FastAPI()
class CommonHeaders(BaseModel):
host: str
save_data: bool
if_modified_since: str | None = None
traceparent: str | None = None
x_tag: list[str] = []
@app.get("/items/")
async def read_items(headers: Annotated[CommonHeaders, Header()]):
return headers
from typing import Annotated, Union
from fastapi import FastAPI, Header
from pydantic import BaseModel
app = FastAPI()
class CommonHeaders(BaseModel):
host: str
save_data: bool
if_modified_since: Union[str, None] = None
traceparent: Union[str, None] = None
x_tag: list[str] = []
@app.get("/items/")
async def read_items(headers: Annotated[CommonHeaders, Header()]):
return headers
from typing import List, Union
from fastapi import FastAPI, Header
from pydantic import BaseModel
from typing_extensions import Annotated
app = FastAPI()
class CommonHeaders(BaseModel):
host: str
save_data: bool
if_modified_since: Union[str, None] = None
traceparent: Union[str, None] = None
x_tag: List[str] = []
@app.get("/items/")
async def read_items(headers: Annotated[CommonHeaders, Header()]):
return headers
Tip
Prefer to use the Annotated
version if possible.
from fastapi import FastAPI, Header
from pydantic import BaseModel
app = FastAPI()
class CommonHeaders(BaseModel):
host: str
save_data: bool
if_modified_since: str | None = None
traceparent: str | None = None
x_tag: list[str] = []
@app.get("/items/")
async def read_items(headers: CommonHeaders = Header()):
return headers
Tip
Prefer to use the Annotated
version if possible.
from typing import Union
from fastapi import FastAPI, Header
from pydantic import BaseModel
app = FastAPI()
class CommonHeaders(BaseModel):
host: str
save_data: bool
if_modified_since: Union[str, None] = None
traceparent: Union[str, None] = None
x_tag: list[str] = []
@app.get("/items/")
async def read_items(headers: CommonHeaders = Header()):
return headers
Tip
Prefer to use the Annotated
version if possible.
from fastapi import FastAPI, Header
from pydantic import BaseModel
app = FastAPI()
class CommonHeaders(BaseModel):
host: str
save_data: bool
if_modified_since: str | None = None
traceparent: str | None = None
x_tag: list[str] = []
@app.get("/items/")
async def read_items(headers: CommonHeaders = Header()):
return headers
FastAPI will extract the data for each field from the headers in the request and give you the Pydantic model you defined.
Check the Docs¶
You can see the required headers in the docs UI at /docs
:
Forbid Extra Headers¶
In some special use cases (probably not very common), you might want to restrict the headers that you want to receive.
You can use Pydantic's model configuration to forbid
any extra
fields:
from typing import Annotated
from fastapi import FastAPI, Header
from pydantic import BaseModel
app = FastAPI()
class CommonHeaders(BaseModel):
model_config = {"extra": "forbid"}
host: str
save_data: bool
if_modified_since: str | None = None
traceparent: str | None = None
x_tag: list[str] = []
@app.get("/items/")
async def read_items(headers: Annotated[CommonHeaders, Header()]):
return headers
from typing import Annotated, Union
from fastapi import FastAPI, Header
from pydantic import BaseModel
app = FastAPI()
class CommonHeaders(BaseModel):
model_config = {"extra": "forbid"}
host: str
save_data: bool
if_modified_since: Union[str, None] = None
traceparent: Union[str, None] = None
x_tag: list[str] = []
@app.get("/items/")
async def read_items(headers: Annotated[CommonHeaders, Header()]):
return headers
from typing import List, Union
from fastapi import FastAPI, Header
from pydantic import BaseModel
from typing_extensions import Annotated
app = FastAPI()
class CommonHeaders(BaseModel):
model_config = {"extra": "forbid"}
host: str
save_data: bool
if_modified_since: Union[str, None] = None
traceparent: Union[str, None] = None
x_tag: List[str] = []
@app.get("/items/")
async def read_items(headers: Annotated[CommonHeaders, Header()]):
return headers
Tip
Prefer to use the Annotated
version if possible.
from fastapi import FastAPI, Header
from pydantic import BaseModel
app = FastAPI()
class CommonHeaders(BaseModel):
model_config = {"extra": "forbid"}
host: str
save_data: bool
if_modified_since: str | None = None
traceparent: str | None = None
x_tag: list[str] = []
@app.get("/items/")
async def read_items(headers: CommonHeaders = Header()):
return headers
Tip
Prefer to use the Annotated
version if possible.
from typing import Union
from fastapi import FastAPI, Header
from pydantic import BaseModel
app = FastAPI()
class CommonHeaders(BaseModel):
model_config = {"extra": "forbid"}
host: str
save_data: bool
if_modified_since: Union[str, None] = None
traceparent: Union[str, None] = None
x_tag: list[str] = []
@app.get("/items/")
async def read_items(headers: CommonHeaders = Header()):
return headers
Tip
Prefer to use the Annotated
version if possible.
from typing import List, Union
from fastapi import FastAPI, Header
from pydantic import BaseModel
app = FastAPI()
class CommonHeaders(BaseModel):
model_config = {"extra": "forbid"}
host: str
save_data: bool
if_modified_since: Union[str, None] = None
traceparent: Union[str, None] = None
x_tag: List[str] = []
@app.get("/items/")
async def read_items(headers: CommonHeaders = Header()):
return headers
If a client tries to send some extra headers, they will receive an error response.
For example, if the client tries to send a tool
header with a value of plumbus
, they will receive an error response telling them that the header parameter tool
is not allowed:
{
"detail": [
{
"type": "extra_forbidden",
"loc": ["header", "tool"],
"msg": "Extra inputs are not permitted",
"input": "plumbus",
}
]
}
Summary¶
You can use Pydantic models to declare headers in FastAPI. 😎