路徑操作進階設定¶
OpenAPI operationId¶
Warning
如果你不是 OpenAPI 的「專家」,大概不需要這個。
你可以用參數 operation_id 為你的路徑操作(path operation)設定要使用的 OpenAPI operationId。
你必須確保每個操作的 operationId 都是唯一的。
from fastapi import FastAPI
app = FastAPI()
@app.get("/items/", operation_id="some_specific_id_you_define")
async def read_items():
return [{"item_id": "Foo"}]
🤓 Other versions and variants
from fastapi import FastAPI
app = FastAPI()
@app.get("/items/", operation_id="some_specific_id_you_define")
async def read_items():
return [{"item_id": "Foo"}]
使用路徑操作函式(path operation function)的名稱作為 operationId¶
如果你想用 API 的函式名稱作為 operationId,你可以遍歷所有路徑,並使用各自的 APIRoute.name 覆寫每個路徑操作的 operation_id。
應在加入所有路徑操作之後再這麼做。
from fastapi import FastAPI
from fastapi.routing import APIRoute
app = FastAPI()
@app.get("/items/")
async def read_items():
return [{"item_id": "Foo"}]
def use_route_names_as_operation_ids(app: FastAPI) -> None:
"""
Simplify operation IDs so that generated API clients have simpler function
names.
Should be called only after all routes have been added.
"""
for route in app.routes:
if isinstance(route, APIRoute):
route.operation_id = route.name # in this case, 'read_items'
use_route_names_as_operation_ids(app)
🤓 Other versions and variants
from fastapi import FastAPI
from fastapi.routing import APIRoute
app = FastAPI()
@app.get("/items/")
async def read_items():
return [{"item_id": "Foo"}]
def use_route_names_as_operation_ids(app: FastAPI) -> None:
"""
Simplify operation IDs so that generated API clients have simpler function
names.
Should be called only after all routes have been added.
"""
for route in app.routes:
if isinstance(route, APIRoute):
route.operation_id = route.name # in this case, 'read_items'
use_route_names_as_operation_ids(app)
Tip
如果你會手動呼叫 app.openapi(),請務必先更新所有 operationId 再呼叫。
Warning
如果你這樣做,必須確保每個路徑操作函式都有唯一的名稱,
即使它們位於不同的模組(Python 檔案)中。
從 OpenAPI 排除¶
若要從產生的 OpenAPI 結構(也就是自動文件系統)中排除某個路徑操作,使用參數 include_in_schema 並將其設為 False:
from fastapi import FastAPI
app = FastAPI()
@app.get("/items/", include_in_schema=False)
async def read_items():
return [{"item_id": "Foo"}]
🤓 Other versions and variants
from fastapi import FastAPI
app = FastAPI()
@app.get("/items/", include_in_schema=False)
async def read_items():
return [{"item_id": "Foo"}]
從 docstring 提供進階描述¶
你可以限制 OpenAPI 從路徑操作函式的 docstring 中使用的內容行數。
加上一個 \f(跳頁字元,form feed)會讓 FastAPI 在此處截斷用於 OpenAPI 的輸出。
這個字元不會出現在文件中,但其他工具(例如 Sphinx)仍可使用其後的內容。
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: str | None = None
price: float
tax: float | None = None
tags: set[str] = set()
@app.post("/items/", summary="Create an item")
async def create_item(item: Item) -> Item:
"""
Create an item with all the information:
- **name**: each item must have a name
- **description**: a long description
- **price**: required
- **tax**: if the item doesn't have tax, you can omit this
- **tags**: a set of unique tag strings for this item
\f
:param item: User input.
"""
return item
額外回應¶
你大概已看過如何為路徑操作宣告 response_model 與 status_code。
這會定義該路徑操作主要回應的中繼資料。
你也可以宣告額外的回應及其模型、狀態碼等。
文件中有完整章節說明,請見 OpenAPI 中的額外回應。
OpenAPI 額外資訊¶
當你在應用程式中宣告一個路徑操作時,FastAPI 會自動產生該路徑操作的相關中繼資料,並納入 OpenAPI 結構中。
技術細節
在 OpenAPI 規格中,這稱為 Operation 物件。
它包含關於路徑操作的所有資訊,並用於產生自動文件。
其中包含 tags、parameters、requestBody、responses 等。
這個針對單一路徑操作的 OpenAPI 結構通常由 FastAPI 自動產生,但你也可以擴充它。
你可以使用參數 openapi_extra 來擴充某個路徑操作的 OpenAPI 結構。
OpenAPI 擴充¶
openapi_extra 可用來宣告例如 OpenAPI 擴充 的資料:
from fastapi import FastAPI
app = FastAPI()
@app.get("/items/", openapi_extra={"x-aperture-labs-portal": "blue"})
async def read_items():
return [{"item_id": "portal-gun"}]
🤓 Other versions and variants
from fastapi import FastAPI
app = FastAPI()
@app.get("/items/", openapi_extra={"x-aperture-labs-portal": "blue"})
async def read_items():
return [{"item_id": "portal-gun"}]
打開自動產生的 API 文件時,你的擴充會顯示在該路徑操作頁面的底部。

而在檢視產生出的 OpenAPI(位於你的 API 的 /openapi.json)時,也可以在相應路徑操作中看到你的擴充:
{
"openapi": "3.1.0",
"info": {
"title": "FastAPI",
"version": "0.1.0"
},
"paths": {
"/items/": {
"get": {
"summary": "Read Items",
"operationId": "read_items_items__get",
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {}
}
}
}
},
"x-aperture-labs-portal": "blue"
}
}
}
}
自訂 OpenAPI 路徑操作結構¶
openapi_extra 中的字典會與自動產生的該路徑操作之 OpenAPI 結構進行深度合併。
因此你可以在自動產生的結構上加入額外資料。
例如,你可以選擇用自己的程式碼讀取並驗證請求,而不使用 FastAPI 與 Pydantic 的自動功能,但仍然希望在 OpenAPI 結構中定義該請求。
你可以透過 openapi_extra 辦到:
from fastapi import FastAPI, Request
app = FastAPI()
def magic_data_reader(raw_body: bytes):
return {
"size": len(raw_body),
"content": {
"name": "Maaaagic",
"price": 42,
"description": "Just kiddin', no magic here. ✨",
},
}
@app.post(
"/items/",
openapi_extra={
"requestBody": {
"content": {
"application/json": {
"schema": {
"required": ["name", "price"],
"type": "object",
"properties": {
"name": {"type": "string"},
"price": {"type": "number"},
"description": {"type": "string"},
},
}
}
},
"required": True,
},
},
)
async def create_item(request: Request):
raw_body = await request.body()
data = magic_data_reader(raw_body)
return data
🤓 Other versions and variants
from fastapi import FastAPI, Request
app = FastAPI()
def magic_data_reader(raw_body: bytes):
return {
"size": len(raw_body),
"content": {
"name": "Maaaagic",
"price": 42,
"description": "Just kiddin', no magic here. ✨",
},
}
@app.post(
"/items/",
openapi_extra={
"requestBody": {
"content": {
"application/json": {
"schema": {
"required": ["name", "price"],
"type": "object",
"properties": {
"name": {"type": "string"},
"price": {"type": "number"},
"description": {"type": "string"},
},
}
}
},
"required": True,
},
},
)
async def create_item(request: Request):
raw_body = await request.body()
data = magic_data_reader(raw_body)
return data
在這個範例中,我們沒有宣告任何 Pydantic 模型。事實上,請求本文甚至不會被 解析 為 JSON,而是直接以 bytes 讀取,並由函式 magic_data_reader() 以某種方式負責解析。
儘管如此,我們仍可宣告請求本文的預期結構。
自訂 OpenAPI Content-Type¶
用同樣的方法,你可以使用 Pydantic 模型來定義 JSON Schema,並把它包含到該路徑操作的自訂 OpenAPI 區段中。
即使請求中的資料型別不是 JSON 也可以這麼做。
例如,在這個應用中,我們不使用 FastAPI 內建的從 Pydantic 模型擷取 JSON Schema 的功能,也不使用 JSON 的自動驗證。實際上,我們將請求的 content type 宣告為 YAML,而非 JSON:
import yaml
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel, ValidationError
app = FastAPI()
class Item(BaseModel):
name: str
tags: list[str]
@app.post(
"/items/",
openapi_extra={
"requestBody": {
"content": {"application/x-yaml": {"schema": Item.model_json_schema()}},
"required": True,
},
},
)
async def create_item(request: Request):
raw_body = await request.body()
try:
data = yaml.safe_load(raw_body)
except yaml.YAMLError:
raise HTTPException(status_code=422, detail="Invalid YAML")
try:
item = Item.model_validate(data)
except ValidationError as e:
raise HTTPException(status_code=422, detail=e.errors(include_url=False))
return item
🤓 Other versions and variants
import yaml
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel, ValidationError
app = FastAPI()
class Item(BaseModel):
name: str
tags: list[str]
@app.post(
"/items/",
openapi_extra={
"requestBody": {
"content": {"application/x-yaml": {"schema": Item.model_json_schema()}},
"required": True,
},
},
)
async def create_item(request: Request):
raw_body = await request.body()
try:
data = yaml.safe_load(raw_body)
except yaml.YAMLError:
raise HTTPException(status_code=422, detail="Invalid YAML")
try:
item = Item.model_validate(data)
except ValidationError as e:
raise HTTPException(status_code=422, detail=e.errors(include_url=False))
return item
儘管沒有使用預設的內建功能,我們仍透過 Pydantic 模型手動產生想以 YAML 接收之資料的 JSON Schema。
接著我們直接使用請求,並將本文擷取為 bytes。這表示 FastAPI 甚至不會嘗試把請求負載解析為 JSON。
然後在程式中直接解析該 YAML 內容,並再次使用相同的 Pydantic 模型來驗證該 YAML 內容:
import yaml
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel, ValidationError
app = FastAPI()
class Item(BaseModel):
name: str
tags: list[str]
@app.post(
"/items/",
openapi_extra={
"requestBody": {
"content": {"application/x-yaml": {"schema": Item.model_json_schema()}},
"required": True,
},
},
)
async def create_item(request: Request):
raw_body = await request.body()
try:
data = yaml.safe_load(raw_body)
except yaml.YAMLError:
raise HTTPException(status_code=422, detail="Invalid YAML")
try:
item = Item.model_validate(data)
except ValidationError as e:
raise HTTPException(status_code=422, detail=e.errors(include_url=False))
return item
🤓 Other versions and variants
import yaml
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel, ValidationError
app = FastAPI()
class Item(BaseModel):
name: str
tags: list[str]
@app.post(
"/items/",
openapi_extra={
"requestBody": {
"content": {"application/x-yaml": {"schema": Item.model_json_schema()}},
"required": True,
},
},
)
async def create_item(request: Request):
raw_body = await request.body()
try:
data = yaml.safe_load(raw_body)
except yaml.YAMLError:
raise HTTPException(status_code=422, detail="Invalid YAML")
try:
item = Item.model_validate(data)
except ValidationError as e:
raise HTTPException(status_code=422, detail=e.errors(include_url=False))
return item
Tip
這裡我們重複使用同一個 Pydantic 模型。
不過也可以用其他方式進行驗證。