跳转至

请求体 - 更新数据

🌐 Translation by AI and humans

This translation was made by AI guided by humans. 🤝

It could have mistakes of misunderstanding the original meaning, or looking unnatural, etc. 🤖

You can improve this translation by helping us guide the AI LLM better.

English version

PUT 替换式更新

更新数据可以使用 HTTP PUT 操作。

把输入数据转换为以 JSON 格式存储的数据(比如,使用 NoSQL 数据库时),可以使用 jsonable_encoder。例如,把 datetime 转换为 str

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str | None = None
    description: str | None = None
    price: float | None = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.put("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    update_item_encoded = jsonable_encoder(item)
    items[item_id] = update_item_encoded
    return update_item_encoded
🤓 Other versions and variants
from typing import Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.put("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    update_item_encoded = jsonable_encoder(item)
    items[item_id] = update_item_encoded
    return update_item_encoded

PUT 用于接收替换现有数据的数据。

关于替换的警告

PUT 把数据项 bar 更新为以下请求体时:

{
    "name": "Barz",
    "price": 3,
    "description": None,
}

因为其中未包含已存储的属性 "tax": 20.2,输入模型会取 "tax": 10.5 的默认值。

因此,保存的数据会带有这个“新的” tax10.5

PATCH 进行部分更新

也可以使用 HTTP PATCH 操作对数据进行部分更新。

也就是说,你只需发送想要更新的数据,其余数据保持不变。

注意

PATCH 没有 PUT 知名,也没那么常用。

很多团队甚至只用 PUT 实现部分更新。

你可以随意选择如何使用它们,FastAPI 不做任何限制。

但本指南会大致展示它们的预期用法。

使用 Pydantic 的 exclude_unset 参数

如果要接收部分更新,建议在 Pydantic 模型的 .model_dump() 中使用 exclude_unset 参数。

比如,item.model_dump(exclude_unset=True)

这会生成一个 dict,只包含创建 item 模型时显式设置的数据,不包含默认值。

然后再用它生成一个只含已设置(在请求中发送)数据、且省略默认值的 dict

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str | None = None
    description: str | None = None
    price: float | None = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}")
async def update_item(item_id: str, item: Item) -> Item:
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.model_dump(exclude_unset=True)
    updated_item = stored_item_model.model_copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
🤓 Other versions and variants
from typing import Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}")
async def update_item(item_id: str, item: Item) -> Item:
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.model_dump(exclude_unset=True)
    updated_item = stored_item_model.model_copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item

使用 Pydantic 的 update 参数

接下来,用 .model_copy() 为已有模型创建副本,并传入 update 参数,值为包含更新数据的 dict

例如,stored_item_model.model_copy(update=update_data)

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str | None = None
    description: str | None = None
    price: float | None = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}")
async def update_item(item_id: str, item: Item) -> Item:
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.model_dump(exclude_unset=True)
    updated_item = stored_item_model.model_copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
🤓 Other versions and variants
from typing import Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}")
async def update_item(item_id: str, item: Item) -> Item:
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.model_dump(exclude_unset=True)
    updated_item = stored_item_model.model_copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item

部分更新小结

简而言之,应用部分更新应当:

  • (可选)使用 PATCH 而不是 PUT
  • 提取已存储的数据。
  • 把该数据放入 Pydantic 模型。
  • 生成不含输入模型默认值的 dict(使用 exclude_unset)。
    • 这样只会更新用户实际设置的值,而不会用模型中的默认值覆盖已存储的值。
  • 为已存储的模型创建副本,用接收到的部分更新数据更新其属性(使用 update 参数)。
  • 把模型副本转换为可存入数据库的形式(比如,使用 jsonable_encoder)。
    • 这类似于再次调用模型的 .model_dump() 方法,但会确保(并转换)值为可转换为 JSON 的数据类型,例如把 datetime 转换为 str
  • 把数据保存至数据库。
  • 返回更新后的模型。
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str | None = None
    description: str | None = None
    price: float | None = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}")
async def update_item(item_id: str, item: Item) -> Item:
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.model_dump(exclude_unset=True)
    updated_item = stored_item_model.model_copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
🤓 Other versions and variants
from typing import Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}")
async def update_item(item_id: str, item: Item) -> Item:
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.model_dump(exclude_unset=True)
    updated_item = stored_item_model.model_copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item

提示

实际上,HTTP PUT 也可以使用同样的技巧。

但这里用 PATCH 举例,因为它就是为这种用例设计的。

注意

注意,输入模型仍会被验证。

因此,如果希望接收的部分更新可以省略所有属性,则需要一个所有属性都标记为可选(带默认值或 None)的模型。

为了区分用于更新(全部可选)和用于创建(必填)的模型,可以参考更多模型 中介绍的思路。