请求体 - 更新数据¶
🌐 Translation by AI and humans
This translation was made by AI guided by humans. 🤝
It could have mistakes of misunderstanding the original meaning, or looking unnatural, etc. 🤖
You can improve this translation by helping us guide the AI LLM better.
用 PUT 替换式更新¶
更新数据可以使用 HTTP PUT 操作。
把输入数据转换为以 JSON 格式存储的数据(比如,使用 NoSQL 数据库时),可以使用 jsonable_encoder。例如,把 datetime 转换为 str。
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str | None = None
description: str | None = None
price: float | None = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.put("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
update_item_encoded = jsonable_encoder(item)
items[item_id] = update_item_encoded
return update_item_encoded
🤓 Other versions and variants
from typing import Union
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: Union[str, None] = None
description: Union[str, None] = None
price: Union[float, None] = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.put("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
update_item_encoded = jsonable_encoder(item)
items[item_id] = update_item_encoded
return update_item_encoded
PUT 用于接收替换现有数据的数据。
关于替换的警告¶
用 PUT 把数据项 bar 更新为以下请求体时:
{
"name": "Barz",
"price": 3,
"description": None,
}
因为其中未包含已存储的属性 "tax": 20.2,输入模型会取 "tax": 10.5 的默认值。
因此,保存的数据会带有这个“新的” tax 值 10.5。
用 PATCH 进行部分更新¶
也可以使用 HTTP PATCH 操作对数据进行部分更新。
也就是说,你只需发送想要更新的数据,其余数据保持不变。
注意
PATCH 没有 PUT 知名,也没那么常用。
很多团队甚至只用 PUT 实现部分更新。
你可以随意选择如何使用它们,FastAPI 不做任何限制。
但本指南会大致展示它们的预期用法。
使用 Pydantic 的 exclude_unset 参数¶
如果要接收部分更新,建议在 Pydantic 模型的 .model_dump() 中使用 exclude_unset 参数。
比如,item.model_dump(exclude_unset=True)。
这会生成一个 dict,只包含创建 item 模型时显式设置的数据,不包含默认值。
然后再用它生成一个只含已设置(在请求中发送)数据、且省略默认值的 dict:
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str | None = None
description: str | None = None
price: float | None = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}")
async def update_item(item_id: str, item: Item) -> Item:
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.model_dump(exclude_unset=True)
updated_item = stored_item_model.model_copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
🤓 Other versions and variants
from typing import Union
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: Union[str, None] = None
description: Union[str, None] = None
price: Union[float, None] = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}")
async def update_item(item_id: str, item: Item) -> Item:
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.model_dump(exclude_unset=True)
updated_item = stored_item_model.model_copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
使用 Pydantic 的 update 参数¶
接下来,用 .model_copy() 为已有模型创建副本,并传入 update 参数,值为包含更新数据的 dict。
例如,stored_item_model.model_copy(update=update_data):
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str | None = None
description: str | None = None
price: float | None = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}")
async def update_item(item_id: str, item: Item) -> Item:
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.model_dump(exclude_unset=True)
updated_item = stored_item_model.model_copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
🤓 Other versions and variants
from typing import Union
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: Union[str, None] = None
description: Union[str, None] = None
price: Union[float, None] = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}")
async def update_item(item_id: str, item: Item) -> Item:
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.model_dump(exclude_unset=True)
updated_item = stored_item_model.model_copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
部分更新小结¶
简而言之,应用部分更新应当:
- (可选)使用
PATCH而不是PUT。 - 提取已存储的数据。
- 把该数据放入 Pydantic 模型。
- 生成不含输入模型默认值的
dict(使用exclude_unset)。- 这样只会更新用户实际设置的值,而不会用模型中的默认值覆盖已存储的值。
- 为已存储的模型创建副本,用接收到的部分更新数据更新其属性(使用
update参数)。 - 把模型副本转换为可存入数据库的形式(比如,使用
jsonable_encoder)。- 这类似于再次调用模型的
.model_dump()方法,但会确保(并转换)值为可转换为 JSON 的数据类型,例如把datetime转换为str。
- 这类似于再次调用模型的
- 把数据保存至数据库。
- 返回更新后的模型。
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str | None = None
description: str | None = None
price: float | None = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}")
async def update_item(item_id: str, item: Item) -> Item:
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.model_dump(exclude_unset=True)
updated_item = stored_item_model.model_copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
🤓 Other versions and variants
from typing import Union
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: Union[str, None] = None
description: Union[str, None] = None
price: Union[float, None] = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}")
async def update_item(item_id: str, item: Item) -> Item:
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.model_dump(exclude_unset=True)
updated_item = stored_item_model.model_copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
提示
实际上,HTTP PUT 也可以使用同样的技巧。
但这里用 PATCH 举例,因为它就是为这种用例设计的。
注意
注意,输入模型仍会被验证。
因此,如果希望接收的部分更新可以省略所有属性,则需要一个所有属性都标记为可选(带默认值或 None)的模型。
为了区分用于更新(全部可选)和用于创建(必填)的模型,可以参考更多模型 中介绍的思路。