Skip to content

查詢參數模型

如果你有一組具有相關性的查詢參數,你可以建立一個 Pydantic 模型來聲明它們。

這將允許你在多個地方重複使用模型,並且一次性為所有參數聲明驗證和元資料 (metadata)。😎

Note

FastAPI 從 0.115.0 版本開始支援這個特性。🤓

使用 Pydantic 模型的查詢參數

在一個 Pydantic 模型中聲明你需要的查詢參數,然後將參數聲明為 Query

from typing import Annotated, Literal

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field

app = FastAPI()


class FilterParams(BaseModel):
    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: Annotated[FilterParams, Query()]):
    return filter_query
🤓 Other versions and variants
from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Annotated, Literal

app = FastAPI()


class FilterParams(BaseModel):
    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: Annotated[FilterParams, Query()]):
    return filter_query
from typing import List

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Annotated, Literal

app = FastAPI()


class FilterParams(BaseModel):
    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: List[str] = []


@app.get("/items/")
async def read_items(filter_query: Annotated[FilterParams, Query()]):
    return filter_query

Tip

Prefer to use the Annotated version if possible.

from typing import Literal

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field

app = FastAPI()


class FilterParams(BaseModel):
    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: FilterParams = Query()):
    return filter_query

Tip

Prefer to use the Annotated version if possible.

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Literal

app = FastAPI()


class FilterParams(BaseModel):
    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: FilterParams = Query()):
    return filter_query

Tip

Prefer to use the Annotated version if possible.

from typing import List

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Literal

app = FastAPI()


class FilterParams(BaseModel):
    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: List[str] = []


@app.get("/items/")
async def read_items(filter_query: FilterParams = Query()):
    return filter_query

FastAPI 將會從請求的查詢參數提取每個欄位的資料,並將其提供給你定義的 Pydantic 模型。

查看文件

你可以在 /docs 頁面的 UI 中查看查詢參數:

禁止額外的查詢參數

在一些特殊的使用場景中(可能不是很常見),你可能希望限制你要收到的查詢參數。

你可以使用 Pydantic 的模型設定來 forbid(禁止)任何 extra(額外)欄位:

from typing import Annotated, Literal

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field

app = FastAPI()


class FilterParams(BaseModel):
    model_config = {"extra": "forbid"}

    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: Annotated[FilterParams, Query()]):
    return filter_query
🤓 Other versions and variants
from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Annotated, Literal

app = FastAPI()


class FilterParams(BaseModel):
    model_config = {"extra": "forbid"}

    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: Annotated[FilterParams, Query()]):
    return filter_query
from typing import List

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Annotated, Literal

app = FastAPI()


class FilterParams(BaseModel):
    model_config = {"extra": "forbid"}

    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: List[str] = []


@app.get("/items/")
async def read_items(filter_query: Annotated[FilterParams, Query()]):
    return filter_query

Tip

Prefer to use the Annotated version if possible.

from typing import Literal

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field

app = FastAPI()


class FilterParams(BaseModel):
    model_config = {"extra": "forbid"}

    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: FilterParams = Query()):
    return filter_query

Tip

Prefer to use the Annotated version if possible.

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Literal

app = FastAPI()


class FilterParams(BaseModel):
    model_config = {"extra": "forbid"}

    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: FilterParams = Query()):
    return filter_query

Tip

Prefer to use the Annotated version if possible.

from typing import List

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Literal

app = FastAPI()


class FilterParams(BaseModel):
    model_config = {"extra": "forbid"}

    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: List[str] = []


@app.get("/items/")
async def read_items(filter_query: FilterParams = Query()):
    return filter_query

如果客戶端嘗試在查詢參數中發送一些額外的資料,他們將會收到一個錯誤回應。

例如,如果客戶端嘗試發送一個值為 plumbustool 查詢參數,如:

https://example.com/items/?limit=10&tool=plumbus

他們將收到一個錯誤回應,告訴他們查詢參數 tool 是不允許的:

{
    "detail": [
        {
            "type": "extra_forbidden",
            "loc": ["query", "tool"],
            "msg": "Extra inputs are not permitted",
            "input": "plumbus"
        }
    ]
}

總結

你可以使用 Pydantic 模型FastAPI 中聲明查詢參數。😎

Tip

劇透警告:你也可以使用 Pydantic 模型來聲明 cookie 和 headers,但你將在本教學的後面部分閱讀到這部分內容。🤫