Тіло – Оновлення¶
Оновлення з використанням PUT
¶
Щоб оновити елемент, Ви можете використати HTTP PUT
операцію.
Ви можете використати jsonable_encoder
, щоб перетворити вхідні дані на такі, які можна зберігати як JSON (наприклад, у NoSQL базі даних). Наприклад, перетворюючи datetime
у str
.
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str | None = None
description: str | None = None
price: float | None = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.put("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
update_item_encoded = jsonable_encoder(item)
items[item_id] = update_item_encoded
return update_item_encoded
🤓 Other versions and variants
from typing import Union
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: Union[str, None] = None
description: Union[str, None] = None
price: Union[float, None] = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.put("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
update_item_encoded = jsonable_encoder(item)
items[item_id] = update_item_encoded
return update_item_encoded
from typing import List, Union
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: Union[str, None] = None
description: Union[str, None] = None
price: Union[float, None] = None
tax: float = 10.5
tags: List[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.put("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
update_item_encoded = jsonable_encoder(item)
items[item_id] = update_item_encoded
return update_item_encoded
PUT
використовується для отримання даних, які мають замінити чинні дані.
Попередження про заміну¶
Це означає, що якщо Ви хочете оновити елемент bar
, використовуючи PUT
з тілом:
{
"name": "Barz",
"price": 3,
"description": None,
}
оскільки він не містить вже збереженого атрибута "tax": 20.2
, модель введення прийме значення за замовчуванням "tax": 10.5
.
І дані будуть збережені з цим "новим" значенням tax
= 10.5
.
Часткові оновлення з PATCH
¶
Ви також можете використовувати операцію HTTP PATCH
для часткового оновлення даних.
Це означає, що Ви можете надіслати лише ті дані, які хочете оновити, залишаючи інші без змін.
Примітка
PATCH
менш відомий і рідше використовується, ніж PUT
.
І багато команд використовують лише PUT
, навіть для часткових оновлень.
Ви вільні використовувати їх так, як хочете, FastAPI не накладає обмежень.
Але цей посібник показує Вам більш-менш як їх задумано використовувати.
Використання параметра exclude_unset
у Pydantic¶
Якщо Ви хочете отримати часткові оновлення, дуже зручно використовувати параметр exclude_unset
у методі .model_dump()
моделі Pydantic.
Наприклад: item.model_dump(exclude_unset=True)
.
Інформація
У Pydantic v1 цей метод називався .dict()
, він був застарілий (але все ще підтримується) у Pydantic v2, і був перейменований у .model_dump()
.
Приклади тут використовують .dict()
для сумісності з Pydantic v1, але Вам слід використовувати .model_dump()
, якщо можете використовувати Pydantic v2.
Це створить dict
лише з тими даними, які були явно встановлені під час створення моделі item
, виключаючи значення за замовчуванням.
Тоді Ви можете використовувати це, щоб створити dict
лише з даними, які були встановлені (надіслані у запиті), пропускаючи значення за замовчуванням:
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str | None = None
description: str | None = None
price: float | None = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.dict(exclude_unset=True)
updated_item = stored_item_model.copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
🤓 Other versions and variants
from typing import Union
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: Union[str, None] = None
description: Union[str, None] = None
price: Union[float, None] = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.dict(exclude_unset=True)
updated_item = stored_item_model.copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
from typing import List, Union
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: Union[str, None] = None
description: Union[str, None] = None
price: Union[float, None] = None
tax: float = 10.5
tags: List[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.dict(exclude_unset=True)
updated_item = stored_item_model.copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
Використання параметра update
у Pydantic¶
Тепер Ви можете створити копію наявної моделі за допомогою .model_copy()
, і передати параметр update
з dict
, який містить дані для оновлення.
Інформація
У Pydantic v1 метод називався .copy()
, він був застарілий (але все ще підтримується) у Pydantic v2, і був перейменований у .model_copy()
.
Приклади тут використовують .copy()
для сумісності з Pydantic v1, але якщо Ви можете використовувати Pydantic v2 — Вам слід використовувати .model_copy()
замість цього.
Наприклад: stored_item_model.model_copy(update=update_data)
:
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str | None = None
description: str | None = None
price: float | None = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.dict(exclude_unset=True)
updated_item = stored_item_model.copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
🤓 Other versions and variants
from typing import Union
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: Union[str, None] = None
description: Union[str, None] = None
price: Union[float, None] = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.dict(exclude_unset=True)
updated_item = stored_item_model.copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
from typing import List, Union
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: Union[str, None] = None
description: Union[str, None] = None
price: Union[float, None] = None
tax: float = 10.5
tags: List[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.dict(exclude_unset=True)
updated_item = stored_item_model.copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
Підсумок часткових оновлень¶
У підсумку, щоб застосувати часткові оновлення, Ви:
- (Опціонально) використовуєте
PATCH
замістьPUT
. - Отримуєте збережені дані.
- Поміщаєте ці дані в модель Pydantic.
- Генеруєте
dict
без значень за замовчуванням з моделі введення (використовуючиexclude_unset
).- Таким чином Ви оновите лише ті значення, які були явно задані користувачем, замість того, щоб перезаписувати вже збережені значення значеннями за замовчуванням з вашої моделі.
- Створюєте копію збереженої моделі, оновлюючи її атрибути отриманими частковими оновленнями (використовуючи параметр
update
). - Перетворюєте скопійовану модель на щось, що можна зберегти у вашу БД (наприклад, використовуючи
jsonable_encoder
).- Це можна порівняти з повторним використанням методу
.model_dump()
моделі, але це гарантує (і перетворює) значення у типи даних, які можна перетворити на JSON, наприклад,datetime
наstr
.
- Це можна порівняти з повторним використанням методу
- Зберігаєте дані у вашу БД.
- Повертаєте оновлену модель.
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str | None = None
description: str | None = None
price: float | None = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.dict(exclude_unset=True)
updated_item = stored_item_model.copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
🤓 Other versions and variants
from typing import Union
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: Union[str, None] = None
description: Union[str, None] = None
price: Union[float, None] = None
tax: float = 10.5
tags: list[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.dict(exclude_unset=True)
updated_item = stored_item_model.copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
from typing import List, Union
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: Union[str, None] = None
description: Union[str, None] = None
price: Union[float, None] = None
tax: float = 10.5
tags: List[str] = []
items = {
"foo": {"name": "Foo", "price": 50.2},
"bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
"baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}
@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
return items[item_id]
@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
stored_item_data = items[item_id]
stored_item_model = Item(**stored_item_data)
update_data = item.dict(exclude_unset=True)
updated_item = stored_item_model.copy(update=update_data)
items[item_id] = jsonable_encoder(updated_item)
return updated_item
Порада
Насправді Ви можете використовувати цю саму техніку і з операцією HTTP PUT
.
Але приклад тут використовує PATCH
, тому що він був створений саме для таких випадків.
Примітка
Зверніть увагу, що модель запиту все ще проходить валідацію.
Тож, якщо Ви хочете отримувати часткові оновлення, які можуть не містити жодного атрибута, Вам потрібно мати модель, де всі атрибути позначені як необов’язкові (зі значеннями за замовчуванням або None
).
Щоб розрізняти моделі з усіма необов’язковими значеннями для оновлення і моделі з обов’язковими значеннями для створення, Ви можете скористатись ідеями, описаними у Додаткові моделі.