Extra Data Types¶
Warning
The current page still doesn't have a translation for this language.
But you can help translating it: Contributing.
Up to now, you have been using common data types, like:
int
float
str
bool
But you can also use more complex data types.
And you will still have the same features as seen up to now:
- Great editor support.
- Data conversion from incoming requests.
- Data conversion for response data.
- Data validation.
- Automatic annotation and documentation.
Other data types¶
Here are some of the additional data types you can use:
UUID
:- A standard "Universally Unique Identifier", common as an ID in many databases and systems.
- In requests and responses will be represented as a
str
.
datetime.datetime
:- A Python
datetime.datetime
. - In requests and responses will be represented as a
str
in ISO 8601 format, like:2008-09-15T15:53:00+05:00
.
- A Python
datetime.date
:- Python
datetime.date
. - In requests and responses will be represented as a
str
in ISO 8601 format, like:2008-09-15
.
- Python
datetime.time
:- A Python
datetime.time
. - In requests and responses will be represented as a
str
in ISO 8601 format, like:14:23:55.003
.
- A Python
datetime.timedelta
:- A Python
datetime.timedelta
. - In requests and responses will be represented as a
float
of total seconds. - Pydantic also allows representing it as a "ISO 8601 time diff encoding", see the docs for more info.
- A Python
frozenset
:- In requests and responses, treated the same as a
set
:- In requests, a list will be read, eliminating duplicates and converting it to a
set
. - In responses, the
set
will be converted to alist
. - The generated schema will specify that the
set
values are unique (using JSON Schema'suniqueItems
).
- In requests, a list will be read, eliminating duplicates and converting it to a
- In requests and responses, treated the same as a
bytes
:- Standard Python
bytes
. - In requests and responses will be treated as
str
. - The generated schema will specify that it's a
str
withbinary
"format".
- Standard Python
Decimal
:- Standard Python
Decimal
. - In requests and responses, handled the same as a
float
.
- Standard Python
- You can check all the valid Pydantic data types here: Pydantic data types.
Example¶
Here's an example path operation with parameters using some of the above types.
from datetime import datetime, time, timedelta
from typing import Annotated
from uuid import UUID
from fastapi import Body, FastAPI
app = FastAPI()
@app.put("/items/{item_id}")
async def read_items(
item_id: UUID,
start_datetime: Annotated[datetime, Body()],
end_datetime: Annotated[datetime, Body()],
process_after: Annotated[timedelta, Body()],
repeat_at: Annotated[time | None, Body()] = None,
):
start_process = start_datetime + process_after
duration = end_datetime - start_process
return {
"item_id": item_id,
"start_datetime": start_datetime,
"end_datetime": end_datetime,
"process_after": process_after,
"repeat_at": repeat_at,
"start_process": start_process,
"duration": duration,
}
from datetime import datetime, time, timedelta
from typing import Annotated, Union
from uuid import UUID
from fastapi import Body, FastAPI
app = FastAPI()
@app.put("/items/{item_id}")
async def read_items(
item_id: UUID,
start_datetime: Annotated[datetime, Body()],
end_datetime: Annotated[datetime, Body()],
process_after: Annotated[timedelta, Body()],
repeat_at: Annotated[Union[time, None], Body()] = None,
):
start_process = start_datetime + process_after
duration = end_datetime - start_process
return {
"item_id": item_id,
"start_datetime": start_datetime,
"end_datetime": end_datetime,
"process_after": process_after,
"repeat_at": repeat_at,
"start_process": start_process,
"duration": duration,
}
from datetime import datetime, time, timedelta
from typing import Union
from uuid import UUID
from fastapi import Body, FastAPI
from typing_extensions import Annotated
app = FastAPI()
@app.put("/items/{item_id}")
async def read_items(
item_id: UUID,
start_datetime: Annotated[datetime, Body()],
end_datetime: Annotated[datetime, Body()],
process_after: Annotated[timedelta, Body()],
repeat_at: Annotated[Union[time, None], Body()] = None,
):
start_process = start_datetime + process_after
duration = end_datetime - start_process
return {
"item_id": item_id,
"start_datetime": start_datetime,
"end_datetime": end_datetime,
"process_after": process_after,
"repeat_at": repeat_at,
"start_process": start_process,
"duration": duration,
}
Tip
Prefer to use the Annotated
version if possible.
from datetime import datetime, time, timedelta
from uuid import UUID
from fastapi import Body, FastAPI
app = FastAPI()
@app.put("/items/{item_id}")
async def read_items(
item_id: UUID,
start_datetime: datetime = Body(),
end_datetime: datetime = Body(),
process_after: timedelta = Body(),
repeat_at: time | None = Body(default=None),
):
start_process = start_datetime + process_after
duration = end_datetime - start_process
return {
"item_id": item_id,
"start_datetime": start_datetime,
"end_datetime": end_datetime,
"process_after": process_after,
"repeat_at": repeat_at,
"start_process": start_process,
"duration": duration,
}
Tip
Prefer to use the Annotated
version if possible.
from datetime import datetime, time, timedelta
from typing import Union
from uuid import UUID
from fastapi import Body, FastAPI
app = FastAPI()
@app.put("/items/{item_id}")
async def read_items(
item_id: UUID,
start_datetime: datetime = Body(),
end_datetime: datetime = Body(),
process_after: timedelta = Body(),
repeat_at: Union[time, None] = Body(default=None),
):
start_process = start_datetime + process_after
duration = end_datetime - start_process
return {
"item_id": item_id,
"start_datetime": start_datetime,
"end_datetime": end_datetime,
"process_after": process_after,
"repeat_at": repeat_at,
"start_process": start_process,
"duration": duration,
}
Note that the parameters inside the function have their natural data type, and you can, for example, perform normal date manipulations, like:
from datetime import datetime, time, timedelta
from typing import Annotated
from uuid import UUID
from fastapi import Body, FastAPI
app = FastAPI()
@app.put("/items/{item_id}")
async def read_items(
item_id: UUID,
start_datetime: Annotated[datetime, Body()],
end_datetime: Annotated[datetime, Body()],
process_after: Annotated[timedelta, Body()],
repeat_at: Annotated[time | None, Body()] = None,
):
start_process = start_datetime + process_after
duration = end_datetime - start_process
return {
"item_id": item_id,
"start_datetime": start_datetime,
"end_datetime": end_datetime,
"process_after": process_after,
"repeat_at": repeat_at,
"start_process": start_process,
"duration": duration,
}
from datetime import datetime, time, timedelta
from typing import Annotated, Union
from uuid import UUID
from fastapi import Body, FastAPI
app = FastAPI()
@app.put("/items/{item_id}")
async def read_items(
item_id: UUID,
start_datetime: Annotated[datetime, Body()],
end_datetime: Annotated[datetime, Body()],
process_after: Annotated[timedelta, Body()],
repeat_at: Annotated[Union[time, None], Body()] = None,
):
start_process = start_datetime + process_after
duration = end_datetime - start_process
return {
"item_id": item_id,
"start_datetime": start_datetime,
"end_datetime": end_datetime,
"process_after": process_after,
"repeat_at": repeat_at,
"start_process": start_process,
"duration": duration,
}
from datetime import datetime, time, timedelta
from typing import Union
from uuid import UUID
from fastapi import Body, FastAPI
from typing_extensions import Annotated
app = FastAPI()
@app.put("/items/{item_id}")
async def read_items(
item_id: UUID,
start_datetime: Annotated[datetime, Body()],
end_datetime: Annotated[datetime, Body()],
process_after: Annotated[timedelta, Body()],
repeat_at: Annotated[Union[time, None], Body()] = None,
):
start_process = start_datetime + process_after
duration = end_datetime - start_process
return {
"item_id": item_id,
"start_datetime": start_datetime,
"end_datetime": end_datetime,
"process_after": process_after,
"repeat_at": repeat_at,
"start_process": start_process,
"duration": duration,
}
Tip
Prefer to use the Annotated
version if possible.
from datetime import datetime, time, timedelta
from uuid import UUID
from fastapi import Body, FastAPI
app = FastAPI()
@app.put("/items/{item_id}")
async def read_items(
item_id: UUID,
start_datetime: datetime = Body(),
end_datetime: datetime = Body(),
process_after: timedelta = Body(),
repeat_at: time | None = Body(default=None),
):
start_process = start_datetime + process_after
duration = end_datetime - start_process
return {
"item_id": item_id,
"start_datetime": start_datetime,
"end_datetime": end_datetime,
"process_after": process_after,
"repeat_at": repeat_at,
"start_process": start_process,
"duration": duration,
}
Tip
Prefer to use the Annotated
version if possible.
from datetime import datetime, time, timedelta
from typing import Union
from uuid import UUID
from fastapi import Body, FastAPI
app = FastAPI()
@app.put("/items/{item_id}")
async def read_items(
item_id: UUID,
start_datetime: datetime = Body(),
end_datetime: datetime = Body(),
process_after: timedelta = Body(),
repeat_at: Union[time, None] = Body(default=None),
):
start_process = start_datetime + process_after
duration = end_datetime - start_process
return {
"item_id": item_id,
"start_datetime": start_datetime,
"end_datetime": end_datetime,
"process_after": process_after,
"repeat_at": repeat_at,
"start_process": start_process,
"duration": duration,
}